References
- Barreiro-Ures D, Francisco-Fernández M, Cao R, Fraguela BB, Doallo R, González-Andújar JL, Reyes M (2019) Analysis of interval-grouped data in weed science: The binnednp Rcpp package. Ecol Evol 9:10903–10915
- Bradford KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci 50:248–260
- Brown, RF, DG Mayer (1988a) Representing Cumulative Germination. 1. A Critical Analysis of Single-value Germination Indices. Annals of Botany 61:117–125
- Brown, RF, DG Mayer (1988b) Representing Cumulative Germination.: 2. The Use of the Weibull Function and Other Empirically Derived Curves. Annals of Botany 61:127–138
- Catara, S., Cristaudo, A., Gualtieri, A., Galesi, R., Impelluso, C., Onofri, A. (2016). Threshold temperatures for seed germination in nine species of Verbascum (Scrophulariaceae). Seed Science Research 26, 30–46.
- Davison, A.C., Hinkley, D.V. (1997). Bootstrap methods and their application. Cambridge University Press, UK.
- Dutang, C, Goulet V and M. Pigeon (2008). actuar: An R Package for Actuarial Science. Journal of Statistical Software, vol. 25, no. 7, 1-37.
- Fay, MP, PA Shaw (2010) Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The interval R Package. Journal of Statistical Software 36:1–34
- Gresta, F, G Avola, A Onofri, U Anastasi, A Cristaudo (2011) When Does Hard Coat Impose Dormancy in Legume Seeds? Lotus and Scorpiurus Case Study. Crop Science 51:1739–1747
- Keshtkar E, Kudsk P, Mesgaran MB (2021) Perspective: Common errors in dose–response analysis and how to avoid them. Pest Manag Sci 77:2599–2608
- Mesgaran, M.B., Mashhadi, H.R., Alizadeh, H., Hunt, J., Young, K.R., Cousens, R.D., 2013. Importance of distribution function selection for hydrothermal time models of seed germination. Weed Research 53, 89–101. https://doi.org/10.1111/wre.12008
- Michael P. Fay, Pamela A. Shaw (2010). Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The interval R Package. Journal of Statistical Software, 36(2), 1-34. URL https://www.jstatsoft.org/v36/i02/.
- Onofri, A, F Gresta, F Tei (2010) A new method for the analysis of germination and emergence data of weed species. Weed Research 50:187–198
- Onofri, A, MB Mesgaran, F Tei, RD Cousens (2011) The cure model: an improved way to describe seed germination? Weed Research 51:516–524
- Onofri, A, MB Mesgaran, P Neve, RD Cousens (2014) Experimental design and parameter estimation for threshold models in seed germination. Weed Research 54:425–435
- Onofri, A., Benincasa, P., Mesgaran, M.B., Ritz, C. (2018). Hydrothermal-time-to-event models for seed germination. European Journal of Agronomy 101, 129–139.
- Onofri, A., Mesgaran, M., & Ritz, C. (2022). A unified framework for the analysis of germination, emergence, and other time-to-event data in weed science. Weed Science, 1-13. doi:10.1017/wsc.2022.8
- Onofri, Andrea, Hans Peter Piepho, and Marcin Kozak (2019). Analysing Censored Data in Agricultural Research: A Review with Examples and Software Tips. Annals of Applied Biology, 174, 3-13.
- Onofri, Andrea, Paolo Benincasa, M B Mesgaran, and Christian Ritz (2018). Hydrothermal-Time-to-Event Models for Seed Germination. European Journal of Agronomy 101: 129–39.
- Pace, R., Benincasa, P., Ghanem, M.E., Quinet, M., Lutts, S. (2012). Germination of untreated and primed seeds in rapeseed (brassica napus var oleifera del.) under salinity and low matric potential. Experimental Agriculture 48, 238–251.
- Ritz C, Jensen SM, Gerhard D, Streibig JC (2019). Dose-response analysis using R CRC Press. USA
- Ritz, C., Baty, F., Streibig, J. C., Gerhard, D. (2015). Dose-Response Analysis Using R PLOS ONE, 10(12)
- Therneau T (2021). A Package for Survival Analysis in R. R package version 3.2-11, <URL: https://CRAN.R-project.org/package=survival>.
- Wickham, H, G Grolemund (2016) R for data science: import, tidy, transform, visualize, and model data. First edition. Sebastopol, CA: O’Reilly. 492 pp.
- Yu, B., Peng, Y. (2008). Mixture cure models for multivariate survival data. Computational Statistics and Data Analysis 52, 1524–1532.
- Zeileis, A., Köll, S., Graham, N. (2020). Various Versatile Variances: An Object-Oriented Implementation of Clustered Covariances in R. J. Stat. Soft. 95. https://doi.org/10.18637/jss.v095.i01
- Alvarado, V., Bradford, K.J., 2002. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell and Environment 25, 1061–1069.
- Baty, F., Ritz, C., Charles, S., Brutsche, M., Flandrois, J. P., Delignette-Muller, M.-L., 2014. A toolbox for nonlinear regression in R: the package nlstools. Journal of Statistical Software, 65, 5, 1-21.
- Bradford, K.J., 2002. Applications of hydrothermal time to quantifying and modelling seed germination and dormancy. Weed Science 50, 248–260.
- Catara, S., Cristaudo, A., Gualtieri, A., Galesi, R., Impelluso, C., Onofri, A., 2016. Threshold temperatures for seed germination in nine species of Verbascum (Scrophulariaceae). Seed Science Research 26, 30–46.
- Garcia-Huidobro, J., Monteith, J.L., Squire, R., 1982. Time, temperature and germination of pearl millet (Pennisetum typhoides S & H.). 1. Constant temperatures. Journal of Experimental Botany 33, 288–296.
- Kropff, M.J., van Laar, H.H. 1993. Modelling crop-weed interactions. CAB International, Books.
- Masin, R., Onofri, A., Gasparini, V., Zanin, G., 2017. Can alternating temperatures be used to estimate base temperature for seed germination? Weed Research 57, 390–398.
- Onofri, A., Benincasa, P., Mesgaran, M.B., Ritz, C., 2018. Hydrothermal-time-to-event models for seed germination. European Journal of Agronomy 101, 129–139.
- Ritz, C., Jensen, S. M., Gerhard, D., Streibig, J. C., 2019. Dose-Response Analysis Using R. CRC Press
- Rowse, H.R., Finch-Savage, W.E., 2003. Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytologist 158, 101–108.
- Zeileis, A., 2006. Object-oriented computation of sandwich estimators. Journal of Statistical Software, 16, 9, 1-16.